Adsorption properties of heavy metals and antibiotics by chitosan from larvae and adult Trypoxylus dichotomus.
Jiang Q, Han Z, Li W, Ji T, Yuan Y, Zhang J, Zhao C, Cheng Z, Wang S.
Carbohydrate polymers. 2022; 276(): 118735

Abstract

Chitosan was prepared by hydrothermal deacetylation from multi-step protein purification chitin based on Trypoxylus dichotomus, for treating heavy metals and antibiotics. Chitosan with higher deacetylation degree and lower molecular weight were synthesized. The adult chitosan was composed of nanofibers arranged more evenly, showing higher yield, thermal stabilities and antimicrobial properties. The adsorption capacities of Cu(2+) and Fe(3+) were 462 and 270 mg/g, lower than 934 mg/g of Pb(2+). Levofloxacin and tetracycline hydrochloride adsorption capacity were 26 and 22 mg/g, lower than 67 mg/g of sulfamethoxazole. In addition, compared with single pollutants, the adsorption of sulfamethoxazole and Pb(2+) can increase by 6% and 5% when they act as composite contaminants. The adsorption procedure can be well described by pseudo-second-order kinetics and Langmuir isothermal model, indicating it a homogeneous monolayer chemisorption. Therefore, the Trypoxylus dichotomus source chitosan prepared by hydrothermal deacetylation has potential applications in the adsorption of complex pollutants. CI - Copyright (c) 2021 Elsevier Ltd. All rights reserved.



P A G E S

Home
Journals
Keywords

P A R T N E R S

Journal Finder
BiblioMed
eJManager
ScopeMed

Privacy Policy | citeindex.org © 2022