GANBOT: a GAN-based framework for social bot detection.
Najari S, Salehi M, Farahbakhsh R.
Social network analysis and mining. 2022; 12(1): 4

Abstract

Nowadays, a massive number of people are involved in various social media. This fact enables organizations and institutions to more easily access their audiences across the globe. Some of them use social bots as an automatic entity to gain intangible access and influence on their users by faster content propagation. Thereby, malicious social bots are populating more and more to fool humans with their unrealistic behavior and content. Hence, that's necessary to distinguish these fake social accounts from real ones. Multiple approaches have been investigated in the literature to answer this problem. Statistical machine learning methods are one of them focusing on handcrafted features to represent characteristics of social bots. Although they reached successful results in some cases, they relied on the bot's behavior and failed in the behavioral change patterns of bots. On the other hands, more advanced deep neural network-based methods aim to overcome this limitation. Generative adversarial network (GAN) as new technology from this domain is a semi-supervised method that demonstrates to extract the behavioral pattern of the data. In this work, we use GAN to leak more information of bot samples for state-of-the-art textual bot detection method (Contextual LSTM). Although GAN augments low labeled data, original textual GAN (Sequence Generative Adversarial Net (SeqGAN)) has the known limitation of convergence. In this paper, we invested this limitation and customized the GAN idea in a new framework called GANBOT, in which the generator and classifier connect by an LSTM layer as a shared channel between them. Our experimental results on a bench-marked dataset of Twitter social bot show our proposed framework outperforms the existing contextual LSTM method by increasing bot detection probabilities. CI - (c) The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.



P A G E S

Home
Journals
Keywords

P A R T N E R S

Journal Finder
BiblioMed
eJManager
ScopeMed

Privacy Policy | citeindex.org © 2022