Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors.
Cova T, Vitorino C, Ferreira M, Nunes S, Rondon-Villarreal P, Pais A.
Methods in molecular biology (Clifton, N.J.). 2022; 2390(): 321-347


Artificial intelligence (AI) consists of a synergistic assembly of enhanced optimization strategies with wide application in drug discovery and development, providing advanced tools for promoting cost-effectiveness throughout drug life cycle. Specifically, AI brings together the potential to improve drug approval rates, reduce development costs, get medications to patients faster, and help patients complying with their treatments. Accelerated pharmaceutical development and drug product approval rates can further benefit from the quantum computing (QC) technology, which will ultimately enable larger profits from patent-protected market exclusivity.Key pharma stakeholders are endorsing cutting-edge technologies based on AI and QC , covering drug discovery, preclinical and clinical development, and postapproval activities. Indeed, AI-QC applications are expected to become standard in the pharma operating model over the next 5-10 years. Generalizing scalability to larger pharmaceutical problems instead of specialization is now the main principle for transforming pharmaceutical tasks on multiple fronts, for which systematic and cost-effective solutions have benefited in areas such as molecular screening, synthetic pathway design, and drug discovery and development.The information generated by coupling the life cycle of drugs and AI and/or QC through data-driven analysis, neural network prediction, and chemical system monitoring will enable (1) better understanding of the complexity of process data, (2) streamlining the design of experiments, (3) discovering new molecular targets and materials, and also (4) planning or rethinking upcoming pharmaceutical challenges The power of AI-QC makes accessible a range of different pharmaceutical problems and their rationalization that have not been previously addressed due to a lack of appropriate analytical tools, demonstrating the breadth of potential applications of these emerging multidimensional approaches. In this context, creating the right AI-QC strategy often involves a steep learning path, especially given the embryonic stage of the industry development and the relative lack of case studies documenting success. As such, a comprehensive knowledge of the underlying pillars is imperative to extend the landscape of applications across the drug life cycle.The topics enclosed in this chapter will focus on AI-QC methods applied to drug discovery and development, with emphasis on the most recent advances in this field. CI - (c) 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.




Journal Finder

Privacy Policy | © 2022